

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Using StoGrade in a GitLab CI Job with stograde ci

The toolkit has built-in support for automated testing of a student’s code with GitLab CI.
A .gitlab-ci.yml file has to be added to the root of their repository (examples below).
If an assignment needs to be excluded from testing, its name can be added to a .stogradeignore file.

Functionality

When running a CI job:

	The toolkit will first determine the student and course based on GitLab environment variables.

	It will then determine which assignments to check based on the directories in the student’s repository.

	The toolkit will then check that all the files are present as well as try compiling them.
It will not run any tests on them, only attempt to compile them.

	If anything is amiss, it will print out warnings letting the student know what’s wrong with their assignment, then fail the job, and thus the whole pipeline.

	This will prompt GitLab to send an email to the student who started the pipeline with their git push telling them that their pipeline failed.

If a file is not required, the optional: true option can be added to the file in the spec.
Thus if it is missing, the build will not fail.
If the file doesn’t have to compile successfully for it to pass, then optional_compile: true option can be added.

Configuration

.stogradeignore

If a student is having their pipeline fail due to an old assignment that they aren’t going to go back and fix, that assignment can be ignored.
Simply add the assignment id to a new line in a .stogradeignore file.

For example, to ignore homework 8, lab 2 and worksheet 4, the .stogradeignore would look like this:

hw8
lab2
ws4

.gitlab-ci.yml

The .gitlab-ci.yml file is what tells GitLab how to run its pipelines for the repository.
We configure it to download a Docker image with StoGrade installed and run stograde ci.
(See the GitLab documentation [https://docs.gitlab.com/ee/ci/yaml/] for more information about how the .gitlab-ci.yml file works.)

Software Design

Because Software Design uses the React App, it needs a few extra libraries to be included.
Thus it uses the -gcc version of the docker images, which are based off of the gcc:latest docker image (instead of the python:3-slim image).

image: ghcr.io/stograde/stograde:latest-gcc
stograde:
 stage: test
 script:
 - stograde ci

Software Design with GCloud

The Software Design students add a Google Cloud integration into their repositories partway through the semester.
They do this by changing the .gitlab-ci.yml file.
This configuration will first run the stograde checks on their homework, and then if that passes will run the deployment to Google Cloud.
Note that the allow_failure: true line under gcloud allows the gcloud section of the pipeline to fail without failing the whole pipeline.
When the whole pipeline fails is when the student gets an email.

stages:
 - stograde
 - gcloud

stograde:
 stage: stograde
 image: ghcr.io/stograde/stograde:latest-gcc
 script:
 - stograde ci

gcloud:
 stage: gcloud
 allow_failure: true
 image: docker.cs.stolaf.edu:443/sd_managers/sd-backend:latest
 script: "source /SD-backend/deploy.sh $PROJECT_ID"

Hardware Design

Because Hardware Design uses ARM assembly, the default runner on thing3 is unable to test their assembly code from late in the semester.
Thus, we add the rasperrypi tag which tells it to use a runner with the raspberrypi tag if possible.

image: ghcr.io/stograde/stograde:latest
stograde:
 stage: test
 tags:
 - raspberrypi
 script:
 - stograde ci

Other Courses

Any other course that doesn’t require special accommodations can use this config:

image: ghcr.io/stograde/stograde:latest
stograde:
 stage: test
 script:
 - stograde ci

Checking Google Drive Submissions with stograde drive

stograde drive is used to determine who has shared a Google Doc with the TAs for grading, and collects the links for all of those documents in one place.

	Setting Up an OAuth 2.0 Client ID

	Running stograde drive

	How to Create an Assignment Detectable by stograde drive

Setting Up an OAuth 2.0 Client ID

stograde drive needs to be able to communicate with the Google Drive API.
Because sharing an API key publicly is a bad idea, you will need to create your own.
Creating a key is free and is done through the Google Cloud Platform.

Creating a Project

Navigate to https://console.developers.google.com.
Make sure you are signed in with your school account (account select is in the top right corner).

If you haven’t used the Google Cloud Platform before, you may see a popup like this.
Check the box and click AGREE AND CONTINUE.

[image: _images/StoGrade_drive_key_step0.png]Step 0

You will then see a screen like this.
Click CREATE PROJECT on the right.

[image: _images/StoGrade_drive_key_step1.png]Step 1

Name the project StoGrade, and set the organization and location to stolaf.edu.
(If stolaf.edu doesn’t show up, make sure you’re using your school account).

[image: _images/StoGrade_drive_key_step2.png]Step 2

After a minute, the bell in the top right corner will indicate you have a notification.
Click on the bell and click SELECT PROJECT for the Create Project: StoGrade notification.

[image: _images/StoGrade_drive_key_step3.png]Step 3

Enabling the Google Drive API

Click on ENABLE APIS AND SERVICES at the top of the screen.

[image: _images/StoGrade_drive_key_step4.png]Step 4

Type drive into the search bar and click on Google Drive API.

[image: _images/StoGrade_drive_key_step5.png]Step 5

Click ENABLE.

[image: _images/StoGrade_drive_key_step6.png]Step 6

You should now see a screen like this.

Configuring the App’s Consent Screen

[image: _images/StoGrade_drive_key_step7.png]Step 7

Open the main side menu (hamburger icon in the top left), hover over APIs & Services and click Credentials.

[image: _images/StoGrade_drive_key_step8.png]Step 8

Click on CONFIGURE CONSENT SCREEN in the top right.

[image: _images/StoGrade_drive_key_step9.png]Step 9

Select Internal as the user type.
This limits the usage of the key to the stolaf.edu domain.
It also means we won’t get a message each time we use it warning us about the security of our app.

[image: _images/StoGrade_drive_key_step10.png]Step 10

Enter StoGrade for the application name.
Scroll down and click Save.

[image: _images/StoGrade_drive_key_step11.png]Step 11

Creating Our Credentials

You should see a screen like this.
Click on Credentials in the menu on the left.

[image: _images/StoGrade_drive_key_step12.png]Step 12

Click on CREATE CREDENTIALS at the top of the screen and select OAuth client ID.

[image: _images/StoGrade_drive_key_step13.png]Step 13

Select Desktop app as the Application type and name it StoGrade Client.
Click CREATE.

[image: _images/StoGrade_drive_key_step14.png]Step 14

There will be a popup with the credentials that you just created.
Click OK.

[image: _images/StoGrade_drive_key_step15.png]Step 15

Downloading Our Credentials

Click on the OAuth 2.0 Client ID you just created.

[image: _images/StoGrade_drive_key_step16.png]Step 16

Click DOWNLOAD JSON at the top.

[image: _images/StoGrade_drive_key_step17.png]Step 17

This will download a JSON representation of your secret key.

Rename the file to client_secret.json and copy it to the directory where your students.txt is located.

Running stograde drive

stograde drive requires a positional argument for the assignment to grade, as well as the --email (or -e) flag.
This flag indicates the group email (e.g. hd-tas@stolaf.edu) that the students have been sharing their documents with and is used to filter out files not shared with that group email.

e.g. stograde drive hw1 --email hd-tas@stolaf.edu

The app will then prompt you to open a long link in your browser.

Open that link and select your stolaf.edu email account.

Click Allow.

[image: _images/StoGrade_drive_auth.png]Drive Authentication

You will then get a key to copy.
Paste this key into the prompt in your terminal.

[image: _images/StoGrade_drive_auth_key.png]Drive Auth Key

How to Create an Assignment Detectable by stograde drive

stograde drive finds assignments based on two criteria:

	It was shared with the email specified with --email (or -e)

	The file name matches a regex expression

The regex expression is determined based on the two attributes of the assignment specified:

	The type of assignment

	The number associated with the assignment

These are put into a regex expression that checks for the keyword(s) associated with the type of assignment, followed by an optional space, then the assignment number, then a non-digit or the end of the name.
Capitalization is ignored.
For example, assignment hw1 will match Homework1 or This is hw 1 for HD, but will not match hw 10.
Other matches would include Copy of HW 1 assignment, CopyOfHomeWork1, homework1assignment, etc.

The keywords for each type are:

	Homework: homework, hw

	Lab: lab

	Worksheet: worksheet, ws

Getting Started

Installation

Requires: Python 3.6+, git

The toolkit should work on macOS, Linux and the Windows Subsystem for Linux.

The toolkit is installed using pip.
pip3 install will install something globally.
Because we may not have global access on the device, such as the lab machines, we’ll give it the --user flag.
This installs into your home folder instead.

To install the toolkit, run pip3 install --user stograde.

When you need to update the toolkit, use pip3 install --user --no-cache --upgrade stograde.

PATH Note

In some cases, your path does not include the python binary directory.
Add this to your path if your command line tells you it can’t find stograde.
This directory is located at

	~/.local/bin on Linux

	~/Library/Python/3.X/bin on macOS, where X is your version (check with python3 -V)

Consult Google or your local unix guru for help.

Create a Directory

Make a directory for grading.
We recommend naming the folder after the course id, i.e. cs251 for Software Design, cs241 for Hardware Design, cs253 for Algorithms and Data Structures, etc.

mkdir dirName
cd dirName

students.txt

The toolkit uses a file called students.txt to know whose repos to download.
The file is a newline-separated list of their usernames.

The students file can also include delimited sections of students using INI format, which allows the --section section-a arguments to work.

Basic Sample

rives
piersonv

More Involved Sample

[my] # this is a section
rives

[section-a] # as is this
rives
piersonv

[section-b] # the comments aren't necessary
magnusow

First Run

The toolkit expects to have a students.txt file and a data directory where it is run from.
If you don’t have the data directory, don’t worry.
The toolkit can clone it for you.

Run stograde repo clone.

If you don’t have a data directory yet, you will be asked if you want to download specs:

data directory not found
Download specs? (Y/N)

After answering with Y, it will then ask which class to download for:

Which class? (SD/HD/ADS/OS/MCS)

Once you have selected a class, it will download the specs and start to clone the student repos.

If your course is not supported by stograde, then 1) let us know, and 2) use the –course flag until we add it

Recording Assignments with stograde record

Running stograde record

stograde record is run with at least one positional argument and any optional flags you add.
For example, to record homework 2, you would run stograde record hw2.
Multiple assignments can be recorded simultaneously - stograde record hw2 lab4 hw16 ws23 is a valid command.

See the advanced usage section for information about various flags that can be used.

What it Does

In broad strokes, stograde record does the following:

	Given a folder name, it cd’s into that folder for each student

	It prints the contents of each file

	It tries to compile those files, and records any warnings and errors

	It runs any tests on those files, and records the output.
It can also pass input to stdin during the execution.

record’s logs are spit out into the logs folder in the current directory.

You’ll want to make sure that you have everything needed for testing installed on your machine.
This may include g++, libcurl, etc. depending on the course.

In More Detail

record’s actions are controlled by the specs in the data/specs directory.
For a detailed explanation of specs, see SPECS.md.

assignment: hw2

compilers:
 - &cpp 'g++ --std=c++11 $@ -o $@.exec'

files:
 - file: types.cpp
 commands: *cpp
 tests: $@.exec

This spec will go into the hw2 folder and look for the types.cpp file.
If it’s not found, it’ll print a warning to the log, and exit.
See the SPECS.md documentation for more details.

If it exists, it’s compiled with the cpp compiler command, as listed under compilers.
The syntax for variables takes after make a bit here; $@ is the “target” of the command, so it’ll compile types.cpp into types.cpp.exec.

Once every file has been compiled, the tests are run.
In this case, all that happens is that the binary is called.
The output is caught and redirected to the log file.
This is repeated for every test.

After the tests are complete, the toolkit removes any artifacts and resets the repository to the state of the last commit.

The toolkit then spits out the log into logs/log-$ASSIGNMENT.md, which will look something like this:

hw2 – rives
First submission for HW2: 2/11/17 17:00:44

Repository has unmerged branches:
 - remotes/origin/lab8

types.cpp (Thu Feb 11 17:00:44 2016 -0600)
    ```cpp
    #include <iostream>
    #include <string>
    using namespace std;

    signed int a;
    unsigned int b;
    signed short int c;
    unsigned short int d;
    signed long int e;
    unsigned long int f;
    float g;
    double i;
    long double k;
    char name;
    wchar_t names;
    bool statement;
    signed char money;
    unsigned char ages;

    int main()
    {
      b = -50;
      cout << b << endl; //prints 4294967246

      //c = 5000000000000;
      //cout << c << endl;   //Overflow error in short int

      return 0;
    }
    ```


no warnings: `g++ --std=c++11 ./types.cpp -o ./types.cpp.exec`

results of `./types.cpp.exec` (status: success)
    ```
    4294967246
    ```


Then, you can just scroll through the file, seeing what people submitted, and saving you from needing to cd between every folder and make each part of the assignment manually.

Advanced Usage

--course {sd|hd|ads|os} affects the calculation of the base Stogit URL.
If not specified explicitly, this will be inferred based on which specs are downloaded.

--stogit URL lets you force the base url where the repositories are cloned from.
It’s passed to git in the form git clone --quiet $URL/$USERNAME.git.

--gist creates a private gist instead of a log file.
If you don’t use this argument, no data ever leaves your system.

--date GIT_DATE checks out the repositories as of GIT_DATE, and runs everything based on that state.
Powerful, but not used much.
(Theoretically, you could grade everyone’s submissions as to their timeliness after the semester is over with this, but that’s a bad idea.)
See man git-rev-parse for more information on what a GIT_DATE is.

--workers controls the amount of parallelization.
It defaults to the number of logical processors in your machine.
-w1 will disable the process pool entirely, which is helpful for debugging.

For other options, run stograde record -h.

StoGrade Referee

StoGrade Referee is a tool that, for all intensive purposes, has been superseded by stograde ci.
Its codebase has not been updated in many years.
But, because the code still exists, here is the documentation that was created for it:

Referee Documentation from CarlHacks 2017

	Make a VM (ping cluster managers)

	Install docker

	Install apache2

	Enable cgi-bin

	Add $IP (192.168.0.26)/cgi-bin/referee.sh as a PUSH webhook on a repository on Stogit

	Add the ssh key from the VM to an account on Stogit

cron

There are somewhere around 3 crontabs.

	(daily) Update Docker image locally on machine. Since this is a transitory process and isn’t always running, there is
no downtime, per se, but requests made during a tiny interval will fail. (This is run at midnight, which is a pretty safe
time.)

	(daily) Git: Pull the toolkit. Since our scripts are run from the toolkit’s repository, we should keep this up-to-date
on the server. Only the master branch is pulled.

	(daily) Git: Pull the specs. Since the specs can change over time, we should keep them up-to-date.

The contents of these are stored in /script/crontab [https://github.com/stograde/stograde/blob/master/script/crontab].

email

Referee sends email through Gmail’s smtp server, which means that we have to authenticate with gmail. Set the
STOGRADE_EMAIL_USERNAME and STOGRADE_EMAIL_PASSWORD environment variables by way of editing the file
/home/referee/gmail_auth.sh (which is a docker env file, not a shell script).

env vars

	STOGRADE_EMAIL_USERNAME: the username to authenticate to gmail with

	STOGRADE_EMAIL_PASSWORD: the password to authenticate to gmail with

Managing Student Repositories with stograde repo

To simply manage student repositories using the toolkit, you have to:

	put your list of students into students.txt

	run stograde repo clone

It will clone the repositories into students/$USERNAME and exit.

Updating Repositories

To update the student repositories, run stograde repo update.

Recloning Repositories

To remove and reclone all repositories, run stograde repo reclone

Specification (Spec) Files

How each homework gets checked is defined using a specification (or spec) file.
These are located in the data/specs directory.

Each course gets a repository for its specs.
To view a list of supported courses, search for repositories tagged with stograde-specs [https://github.com/search?q=topic%3Astograde-specs+org%3Astograde].

If your course is not supported, create a new spec repo based on the template-specs repository template.
Spec files are located in specs and any supporting files are located in supporting/$ASSIGNMENT.

To jump to the explanation of a specific tag, follow the following links:

	assignment:

	folder:

	architecture:

	compilers:

	files:

	file:

	alternates:

	commands:

	tests:

	options: (and its child tags)

	supporting:

	inputs:

Naming

Spec files are .yaml files, named after the assignment they represent.
A homework has a hw prefix, lab has a lab prefix and worksheet has a ws prefix.
For example, homework 1 would be specified in hw1.yaml, homework 15 in hw15.yaml, lab 5 in lab5.yaml, worksheet 3 in ws3.yaml, etc.

Creating a Spec File

A spec file is made up of the following parts:

	A ---, denoting the start of the yaml file.

	An assignment: tag that specifies the name of the assignment (this should be the same as the filename, without the .yaml)

	Any extra properties about the assignment, such as folder: or architecture:

	The compilers: array, a list of commands that can be used to compile files (if applicable)

	The files: array, listing all files in the assignment, along with how to compile and test them

Testing a Different Directory

If you want to test a directory other than the one that would be used by default (named after the assignment), you can add a folder: tag.
The value will be used in place of the assignment’s name when cding into the student’s directory.
For example, a folder: images line in homework 15 will have the toolkit cd into images instead of hw15 when checking a student’s assignment.

Testing on a Specific Architecture

When you are compiling assembly code, you can’t compile it just anywhere - it has to be compatible with your system’s architecture.
To prevent extraneous warnings and errors caused by compiling on the wrong architecture, spec files support an architecture: tag.
The architecture is checked using uname -m and the result is compared to the value of architecture:.
If architecture: is not present, then it is assumed that the code is not dependent on a specific architecture.
The main use of this is in Hardware Design when students start writing ARM assembly.
The HD specs that contain assembly add architecture: armv7l (note the v7l at the end) to specify that the ARM architecture is required.

When the architecture is incompatible:

	if the toolkit is running as part of a CI job, it will print a notice that it is skipping the assignment because of wrong architecture

	otherwise it will print a warning that the assignment requires the specific architecture and will tell you what architecture you have

Compilers

Commands used to compile files can be specified using anchor-alias form.
The anchors are listed in an array under compilers:.
An anchor is identified with &name '...'.
This copies the anchor into the place where the alias is located.

Variables in Commands

The target of the command can be inserted into the command with $@.
Whenever a $@ is encountered, the $@ is replaced with the filename.
For example, if the command is cat $@ and the filename is test.txt, the command will become cat test.txt.

Common Compilers

	C++ file: gcc --std=c++11 $@ -o $@.exec

	React App file: gcc --std=c++11 $@ react.o -lcurl

Files

Files are listed in an array under a files: tag.
Each filename is specified with file: name.
For example:

files:
 - file: hw1.txt
 - file: Dog.cpp
 - file: Dog.h
 - file: tryDog.cpp

Alternate Names

If a student turns in a file but it is not named properly, it will not be detected by StoGrade.
If there is a file that multiple students have or may misname, this can be accommodated for in the spec file.
Using the alternates: tag, one or more alternate names for the file can be given.
For example:

files:
 - file: Dog.cpp
 alternates: dog.cpp
 - file: Dog.h
 alternates:
 - dog.h
 - cat.h

If alternate names are given and more than one name has a matching file, then a warning will be printed in the recording alerting the grader that the file the student intended to turn in may not be the one shown in the recording.

Compile Steps

Commands for compiling a file are specified with a commands: tag.
Compile steps are commonly given using the anchor-alias form.
The anchor is specified under the compilers: tag (see above).
The alias for the anchor is *name.
This copies the anchor into the place where the alias is located.
For example:

compilers:
 - &cpp 'g++ --std=c++11 $@ -o $@.exec

files:
 - file: options.cpp
 commands: *cpp

When the yaml is parsed, this becomes:

files:
 - file: options.cpp
 commands: g++ --std=c++11 $@ -o $@.exec

When the compile command is parsed before being run, it becomes gcc --std=c++11 options.cpp -o options.cpp.exec
(explained above under Variables in Commands).

Test Steps

Test commands are specified just like compile commands but with a tests: tag.
Continuing the example from above:

compilers:
 - &cpp 'g++ --std=c++11 $@ -o $@.exec

files:
 - file: options.cpp
 commands: *cpp
 tests: $@.exec

Options

	hide_contents: - Don’t include the contents of the file in the log output. (default: false)

	optional: - The file isn’t required for the assignment to be complete.
If missing, the file will have (optional submission) in the log file and will not fail any CI jobs. (default: false)

	optional_compile: - The file doesn’t have to compile for the CI job to pass. (default: false)

	timeout: - Limit how long the executable can run (in seconds) before being stopped. (default: 4.0)

	truncate_contents: - Limit how many lines of the file will be included in the log file. (default: 10000)

	truncate_output: - Limit how many lines of the output will be included in the log file. (default: 10000)

	web: - This file requires the Software Design React app for testing (default: false)

Continuing the example from above:

compilers:
 - &cpp 'g++ --std=c++11 $@ -o $@.exec

files:
 - file: options.cpp
 commands: *cpp
 tests: $@.exec
 options:
 web: true
 optional: true

Supporting Files

Some files need extra files for compiling or testing that are the same for everyone and aren’t part of the submission.
These can be added to the directory with an array under the supporting: tag.
A supporting file is located in data/supporting/$ASSIGNMENT.
Each file specified under supporting is copied into the directory before compiling, and removed after testing.
A different destination (such as the parent directory) can be specified with a destination: tag.
For example:

supporting:
 - file: react.o
 - file: react.h
 destination: ../react.h

Input Files

Some files are used as input while testing an executable.
These can be added to the directory with an array under the inputs: tag.
An input file is located in data/supporting/$ASSIGNMENT.
Each file specified under inputs is copied into the directory before compiling, and removed after testing.
A different destination (such as the parent directory) can be specified with a destination: tag.
For example:

inputs:
 - file: in.txt

Supporting vs Input Files

You may notice that the descriptions for supporting and inputs are very similar.
This is because the inputs: tag has the exact same functionality as the supporting: tag, so they technically can be used interchangeably.
The distinction is mainly for clarity about what the file is being used for, as well as backward compatibility with old specs.
(i.e. header files like react.h would be listed under supporting while input files like in.txt would be listed under inputs.)

Getting an Overview of Submissions with stograde table

A chart can be printed out to give you an overview of what has been turned in.
(This only checks if the file has been submitted.
It does not check if the file compiles properly or if its tests pass.)

Running stograde table will produce something like this:

USER | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 1 2 3 4 5 6 7 8 9 10 11 | 1 2
–––––––––––+–––+––––––––––––––––––––––––-|-----
rives | 1 2 3 4 5 6 7 8 9 10 11 12 13 –– 15 16 17 18 19 20 21 22 23 24 25 | 1 2 3 4 – 6 7 8 9 10 11 | 1 -
student1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 –– –– –– 17 18 19 –– –– –– –– –– –– | 1 2 – 4 – 6 7 – – –– –– | - -
magnusow | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 1 2 3 4 – – 7 8 9 10 11 | 1 2
volz | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 1 2 3 4 – 6 7 8 9 10 11 | 1 2
piersonv | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 1 2 3 4 – 6 7 8 9 10 11 | - 2

The first set of columns are the homeworks, the second are the labs, and the third are the worksheets.

Options

You can use the --section and --students arguments to filter which students are processed.

	--section relies on there being sections in the students.txt file

	--students overrides all of the other options.
For example, --students rives piersonv would only look at those two students.

You can use the --sort-by argument to sort the table, as well.
name is the default, sorting by username.
count sorts by the number of completed submissions.

If you want the table as quickly as possible, pass -R/--skip-repo-check to bypass the remote repository check.

--no-partials can be passed to disable highlighting of any partial submissions.

For other options, run stograde table -h.

Grading React App Files with stograde web

Files created for the SD React App need to be graded differently.
They need the browser React app to view how they render.
This poses an issue, as the toolkit was originally designed for homeworks that only use the command line.
A command line interface was designed that allows you to view students’ files in the app.

Starting the CLI

The CLI requires one flag:

	--port PORT - setting the port that the server uses to communicate with the app.
This port is different for each React app user, so you can figure it out by opening the app and looking at the network logs.
The IP it is connecting to will be listed, along with a : and a number.
That last number is your port.

To start the CLI, run stograde web HW --port #.

A web server like the ~/bridge.py used by students is started in a separate thread.
Then a command line interface is started that allows you to choose what file to render.

Using the CLI

The interface starts by updating all student repos.
It will say Loading repos. Please wait....
When this is done, it will show a list of students to choose from:

? Choose student (Use arrow keys)
 QUIT
 rives
 student1
 magnusow
 volz
 piersonv
 narvae1

Select a student using the arrow keys and enter.
This will show a Processing... message, then show you a list of all files in the homework.

? Choose student narvae1
Processing...
? Choose file (Use arrow keys)
 BACK
 story.cpp
 weather.cpp
 weather2.cpp

Select the file using the arrow keys and enter.
This will compile it and redirect the server to deliver the new executable when the client asks.

 _images/StoGrade_drive_key_step9.png
= GoogleAPIs

API

EE

a

2 StoGrade v

APIs & Services

Dashboard
Library

Credentials

‘OAuth consent screen
Domain verfication

Page usage agreements

Q@ Search for APIs and Services
Credentials + CREATE CREDENTIALS W DELETE
Greate credentials to access your enabled APIs. Leam more

A Rememberto configure the OAuth consent screen with information about your application.

API Keys

O Name Creation date Restrictions

No AP1 keys to display

OAuth 2.0 Client IDs

O Neme Creation date &

No OAuth clients to display

Service Accounts

O emai Name P Usage with all services (last 30 days) @

No service accounts to display

Usage with all services (last 30 days) @

Type

Client ID

CONFIGURE CONSENT SCREEN

Manage service accounts

_static/ajax-loader.gif

_images/StoGrade_drive_auth_key.png
Google
Signin

Please copy this code, switch to your application and paste it there:

4/3uE_SZ13M3k-8lIva01yQoHoaoxrilNG-Kbz35U3Z- [[]
SKGrprlt7Isag

_static/comment-close.png

_images/StoGrade_drive_key_step0.png
) Google Cloud Platform

Welcome !

Create and manage your Google Cloud Platform instances, disks, networks, and other
resources in one place.

Country

United States

Terms of Service

[0 1agree to the Google Cloud Platform Terms of Service, and the terms of
service of any applicable services and APls.

AGREE AND CONTINUE

_static/comment.png

_images/StoGrade_drive_auth.png
G signin with Google

StoGrade wants to access your
Google Account

@ rervectostosiods

This will allow StoGrade to:

& View metadata for files in your Google Drive [6)

Make sure you trust StoGrade

You may be sharing sensitive info with this site or app.
Learn about how StoGrade will handle your data by
reviewing its terms of service and privacy policies. You can
always see or remove access in your Google Account.

Learn about the risks

canee! m

_static/comment-bright.png

_images/StoGrade_drive_key_step11.png
OAuth consent screen

Before your users authenticate, this consent screen willallow them to choose.
whether they want {o grant access to their private data, as wel as aive them a ink.
to yourterms of service and privacy policy. This page configures the consent
‘screen for al applications in this project.

Application type
Public
‘Any Google Accourt can grant access to the scopes reauired by tis app.
Learn more about scopes

® Intemal
Only users with 2 Google Account in your organization can grant access 1o the scopes
requested by this app

‘Application name
‘The neme of the app asking for consent

StoGradgl

Application logo
‘Animage on the consent screen that will help users recogrize your app

Local file for upload Browse

‘Support email
‘Shown on the consent screen for user support

narvael @stolat.edu =
‘Scopes for Gaogle APIs
‘Scopes allow your application to access your user' private data. Leain more
1f you add a sensitive scope, such s scopes that give you fullaccess to Calendr o Drive,
‘Google wil veify your consent screen before s published.

email

profile

openid.

Add scope.

Authorized domains.
“To protect you and your users, Google only allows applications that authenticate using
OAUth 10 use Authorized Domains. Your applications' inks must be hosted on Authorized.

About the consent screen

‘The consent screen tells your users who is
requesting access to thelr data and what kind of data
youre asking to access.

OAuth verification

To protect you and your users, your consent screen
and application may need to be verified by Google.
Verification is required if your app is marked as.
Public and at least one of the following is true:

= Your app uses a sensitive and/or restricted
scope.

« Your app displays an icon on its OAuth consent
sereen

= Your app has a large number of authorized
domains

« Youhave mage changes to a previously-verified
‘OAuth consent screen

“The verification process may take up to several
weeks, and you will recsive email updates as it
progresses. Learn more about verification

Before your consent screen and application are
verified by Google, you can stiltest your application
with limitations. Learn more about how your app will
behave before its verified.

Let us know what you think about our OAuth
experience.

©OAuth grant limits

Token grant rate
Your current per minute token grant rate limit is 100
‘arants per minute. The per minute token grant rate.
esets every minute. Your current per day token rant
rate lmitis 10,000 grants per day. The per day token
arant rate resets every day.

Raise limit

n [en [10 [70 [300

No data for this time interval

_images/StoGrade_drive_key_step12.png
= Google APIs g TestStograde v Q Search for API:

API

EE

APIs & Services

Dashboard
Library

Credentials

OAuth consent screen
Domain verfication

Page usage agreements

OAuth consent screen

StoGrade , eoirare

User type

Internal @

MAKE EXTERNAL

OAuth rate limits

Your token grantrate @

Token grant rates limit how quickly your application can get new users.

Your current per day token grant rate limit is 10,000 grants per day. The per
day token grant rate resets every day. Raise daily token limit

5minutes 1 day

10001

Ne-dstais-avaieblefor the selected time frame-

sem ePm opu

SAM sAM oAM 2P

A SHOW LESS

Let us know what you think about our OAUth experience

_static/file.png

_images/StoGrade_drive_key_step1.png
= Google APIs selectaproject v

Q

Search for APIs and Services

o2 : @

API

APIs & Services

Dashboard
Library

Credentials

‘OAuth consent screen
Domain verfication

Page usage agreements

Dashboard

o view this page, select a project

CREATE PROJECT

_static/down-pressed.png

_images/StoGrade_drive_key_step10.png
OAuth consent screen

Choose how you want to configure and register your app, including your
target users. You can only associate one app with your project.

User Type
@ Internal @

Only available to users within your organization. You will not need to
submit your app for verification.

O External @

Available to any user with a Google Account.

Let us know what you think about our OAUth experience

_static/down.png

_images/StoGrade_drive_key_step13.png
Q Search for APIs and Service

Credentials

Create credentials to ac

API Keys

(m]

No AP1 keys to displa

OAuth 2.0 Clie

(m]

+ CREATECREDENTIALS [DELETE

APl key
Identifies your project using a simple AP1 key to check quota and access

OAuth client ID
Requests user consent 5o your app can access the user's data

Service account
Enables server-to-server, app-level authentication using robot accounts

Help me choose
Asks a few questions to help you decide which type of credential to use

Creation date

_images/StoGrade_drive_key_step14.png
& Create OAuth client ID

A client D is used to identify a single 2pp to Google's OAuth servers. If your app runs on
‘multiple platforms, each will need its own client ID. See Setting up OAuth 2.0 for more
information.

Application type
Desktop app -

Learn more about OAuth client types

Name*

[‘StoGrade Client

“The name of your OAuth 2.0 client. This name is only used {o identify the client n the
‘console and willnot be shown to end users.

create VAR

_static/plus.png

_images/StoGrade_drive_key_step15.png
OAuth client created

‘The client ID and secret can always be accessed from Credentials in APIs &
Services

‘OAuth access is restricted to users within your organization
unless the OAuth consent screen is published and verified.

Your Client ID

Your Client Secret

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_images/StoGrade_drive_key_step2.png
New Project

‘You have 19 projects remaining in your quota. Request an increase or
delete projects. Learn more

MANAGE QUOTAS

Project name *

StoGrade| [

Project ID: stograde-289018. It cannot be changed later. EDIT

Organization*
Stolaf.edu - @

Select an organization to atiach it to a project This selection canit be changed later

Location*
Bl stolaf.edu BROWSE

Parent organization or folder

REATE [EVVN

_images/StoGrade_drive_key_step3.png
o s : @

Notifications

@ Create Project: StoGrade Justnow
SELECT PROJECT RoJECT

_images/StoGrade_drive_key_step16.png
API Keys

O Neme

No API keys to display
OAuth 2.0 Client IDs
O Neme

O [stosrade client

Service Accounts

0O emai

No service accounts to display

Creation date

Creation date
Sep9,2020

Name

Restrictions

Type

Desktop

Usage with all services (last 30 days) @

Usage with all services (last 30 days) @

Client ID

L]

VB 4

Manage service accounts

_static/up-pressed.png

_images/StoGrade_drive_key_step17.png
- Q_ Search for APIs and Services

& Client ID for Desktop 2 DOWNLOADJSON | (3 RESETSECRET [DELETE
Name* Client D
Storade Client
Client secret

“The name of your OAuth 2.0 client. This name is only used to identify the client n the

‘console and wil not be shown to end users. Creation date

3 -

_static/up.png

_images/StoGrade_drive_key_step6.png
Google Drive API

Google

The Google Drive AP! allows clients to access resources from Google Drive

GUCTR 1Ry THIS AP 2

OVERVIEW DOCUMENTATION

Overview

The Google Drive AP! allows clients to access resources from Google Drive.

About Google

Google's mission is to organize the world's information and make it
universally accessible and useful. Through products and platforms like
Search, Maps, Gmail, Android, Google Play, Chrome and YouTube, Google
plays a meaningful role in the daily lives of billions of people.

Tutorials and documentation

Learn more 12
Terms of Service

By using this product you agree to the terms and conditions of the following license:
Google APIs Terms of S

More products to explore

Additional details
Type: APIs & services
Last updated: 12/9/19

Category: Storage, G Suite
Service name: drive googleapis.com

_images/StoGrade_drive_key_step7.png
= GoogleAPIs

StoGrade v

Q Search for APIs and Services

APIs & Services

Google Drive API Overview

Overview

Metrics

Quotas
o Credentials

% Drive Ul ntegration

@ Touse this AP, you may need credentials. Click ‘Create credenti

W DISABLE API

Is'to get started.

Details i Traffic by response code

Name
Google Drive API

By
Google

Request/sec (2 hr average)

Service name
drive. googleapis.com

Overview

‘The Google Drive AP allows clients to access resources from Google
Drive.

Activation status.
Enabled

Teett Thuts Satts Mont7

[

Tutorials and documentation
> Viewmetrics

Wed 19

A Nodsta is available for the selected time frame.

Fn2t

sun23

Tue 25

o2

sa29

Sep01

a3

satos

Mono7

Wed0o

CREATE CREDENTIALS

108

o8

08

oas

02

o

Learn more

Try in API Explorer

<

_images/StoGrade_drive_key_step4.png
API APIs & Services APIs & Services =+ ENABLE APIS AND SERVICES

< Dashboard
@ You donit have any APIs available to use yet. To get started, click “Enable APIs and services” or go to the AP library
o Librery

o Credentials

OAuth consent screen

Domain verification

Page usage agreements

_images/StoGrade_drive_key_step5.png
& Search

Filter by 5results

CATEGORY

Analytics (1) °

Big data (2)
Developer tools (1)
G suite (1)
Healthcare (1)
Mobile (1)

Storage (1)

Q drive

Google Drive API
Google

‘The Google Drive AP allows clients to access resources from Google Drive

Drive Activity AP
Google

Provides a historical view of activity in Google Drive.

Cloud Messaging
Google

Cross-platform messaging solution that lets you reliably deliver messages at no cost.

Pub/Sub Lite [Beta] API
Google

A zonal messaging service optimized for cost

Cloud Healthcare API
Google

Store and access healthcare data on Google Cloud Platform.

_images/StoGrade_drive_key_step8.png
= GoogleAPls g StoGrade v

APIs & Services
Dashboard

& Billing Library

 support Credentials
uppor
OAuth consent screen

Q@

1AM & Admin > Domain verification

Page usage agreements

